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Categories

Def : Category

A category C is a collection of objects (A,B,X ,Y , ... ∈ Ob(C))
and morphisms (f : A→ B) such that:

The collection of morphisms f : A→ B form a Set
HomC(A,B)

There is an associative and unital law of composition
◦ : HomC(B,C )× HomC(A,B)→ HomC(A,C )

we typically write the composition of two morphisms by f ◦ g .
Associativity implies (f ◦ g) ◦ h = f ◦ (g ◦ h).
Unital is the existence of ”identity morphisms” IdC ∈ Hom(C ,C )
with IdB ◦ f = f = f ◦ IdA
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Examples of Categories

Some examples include Set, Top, Grp, Ab, Ring , ModR

Categories capture the idea of structure and structure
preserving relations.

In general, individual objects of a category need not be sets,
the morphisms need not be functions, and the collection of
objects Ob(C) need not form a set.

Def : Small Category

A Small Category is a category in which the objects form a set.

Examples: (R,≤), O(X )
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O(X)

Def : O(X)

Let X be a topological space. O(X) is the small category whose
objects are the open sets of X, and whose morphisms are the
inclusions iU,V : U ↪→ V (that is when U ⊆ V )

Self inclusion gives the identity map, and composition is given
by transitivity of ⊆
For every U ∈ O(x) we can consider an open covering of U,
{Ui → U} (that is,

⋃
Ui = U)

For two U,V ∈ O(X ) we can consider the intersection
U ∩ V ∈ O(X )
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Functors

We want a way to retrieve relevant data from objects in our
category

Def : Functors

Let C, D be two categories. A functor F : C→ D is a rule
F : ob(C)→ ob(D) and F : mor(C)→ mor(D) such that:

if f : A→ B then F (f ) : F (A)→ F (B)

F (f ◦ g) = F (f ) ◦ F (g)

F (IdC ) = IdF (C)

There is also the notion of a contravariant functor, a functor
such that F (f : A→ B) = F (f ) : F (B)→ F (A), in this case we
write F : Cop → D
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Examples / Intuition

relevant examples include π1 : Top → Grp, Hn : Top → Ab,
Hn : Topop → Ab, C (−,Y ) : Topop → Set,
O : Top → Sm(Top)

C (X ,Y ) = {f : X → Y |continuous}, if f : A→ X then
C (f ,Y ) = f ∗ : C (X ,Y )→ C (A,Y ) by φ 7→ φ ◦ f

The intuition behind a functor is that it captures C - invariants
valued in D
This is great, but a functor tells us the ”global” invariants of a
space, we would like to find local ones.
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Presheaves, C(-,Y)

This notion of ”locality” is captured by a presheaf:

Def : Presheaf

a presheaf on a space X is a contravariant functor
F : O(X )op → Set

An example of a presheaf is C (−,Y ). In this case:
C (U,Y ) = {f : U → Y |continuous}
C (iU,V ,Y )(f : V → Y ) = f ◦ iU,V = f |U : U → Y .
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Properties of C (−,Y ) : O(X )op → Set

C (−,Y ) enjoys some nice properties:

Given {Ui → U} an (open) covering:
1)gluing: if fi : Ui → Y such that

fi |Ui∩Uj
= fj |Ui∩Uj

then ∃!f : U → Y such that f |Ui
= fi

2)Locality: If f , g : U → Y such that

f |Ui
= g |Ui

then f = g

In this case we say that the presheaf C (−,Y ) is a sheaf
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Sheaves

Def : Sheaf

A presheaf P : O(X )op → Y is a sheaf if,
given {Ui → U} an (open) covering:
1)gluing: if fi ∈ P(Ui ) such that

P(iUi∩Uj ,Ui
)(fi ) = P(iUi∩Uj ,Uj

)(fj)

then ∃!f ∈ P(U) such that P(iUi ,U)(f ) = fi
2)Locality: If f , g ∈ P(U) such that

P(iUi ,U)(f ) = P(iUi ,U)(g)

then f = g
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Intuition

-A category captures the idea of mathematical structure and
structure preserving relations
-A functor extracts data from objects with structure
-A presheaf extracts local data from an object
-A sheaf extracts local data from an object that can be used to
build global data.
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Pit Stop for Applications

Brandon Fong and his advisor David Spivak recently described
Backpropogation in reinforncement learning as a functor (good
because it captures compositionality of learning) [LEARN]

Michael Sent me a giant paper with tons of applications, one
of which I thought was very cool: Viewing the coverage area
of a bunch of cameras and the data they retrieve in terms of
sheaves. [SSA]



18/59

Generalization Scheme

In order to talk about the application to OLOGs, we must remove
our set theoretic crutches.

P : O(X )op → Set =⇒ P : Cop → D

O(X ) =⇒ C ”Site”
U ∩ V =⇒ U ×X V ”Pullback”⋃

Ui = U =⇒ {Ui → U} ”Covering”

Set =⇒ D ”Complete Category”
{fi ∈ P(Ui )}i∈I =⇒

∏
i∈I P(Ui ) ”Product”

f = g =⇒ Eq(f , g) ”Equalizer”
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Pullbacks, Products and Equalizers (oh my!)

X

U V

i j

Given this diagram
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Pullbacks, Products and Equalizers (oh my!)

X

U V

U ×X V

i j

πU πV

Given this diagram, the pullback is an
object U ×X V , with two maps πU , πV
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X

U V

U ×X V

Z

i j

πU πV

Given this diagram, the pullback is an
object U ×X V completing the diagram
with two maps πU , πV , such that if any
other object Z completes the diagram,
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Pullbacks, Products and Equalizers (oh my!)

X

U V

U ×X V

Z

i j

πU πV

!

Given this diagram, the pullback is an
object U ×X V completing the diagram
with two maps πU , πV , such that if any
other object Z completes the diagram,
there is a unique map Z → U ×X V
making the whole diagram commute
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Pullbacks, Products and Equalizers (oh my!)

X

U V

U ×X V

Z

i j

πU πV

!

In Set, the pullback is given
specifically by U ×X V =
{(u, v) ∈ U × V |i(u) = j(v)}
Specifically, if U,V are subsets of X
and i,j the inclusions, then
U ×X V = U ∩ V
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Pullbacks, Products and Equalizers (oh my!)

∏
i∈I Xi

Xj

πj

Given a collection of objects {Xi}i∈I
indexed by a set I, we can form the
product

∏
i∈I Xi . This product comes

with projection maps πj
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∏
i∈I Xi Z

Xj

πj

Given a collection of objects {Xi}i∈I
indexed by a set I, we can form the
product

∏
i∈I Xi . This product comes

with projection maps πj . If any other
object comes with maps Z → Xi
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Pullbacks, Products and Equalizers (oh my!)

∏
i∈I Xi Z

Xj

πj

!

Given a collection of objects {Xi}i∈I
indexed by a set I, we can form the
product

∏
i∈I Xi . This product comes

with projection maps πj . If any other
object comes with maps Z → Xi , then
they must factor through a unique map
Z →

∏
Xi .
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Pullbacks, Products and Equalizers (oh my!)

∏
i∈I Xi Z

Xj

πj

!

Of course the product of sets is the
usual cartesian product of set, for
spaces it is the cartesian product
with the product topology

Warning! In the same way that not
every object is a set, not every
product is the cartesian product.
(For example in certain cases the
product in one can be realized as a
pullback in another)
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Pullbacks, Products and Equalizers (oh my!)

X Y
f

g
given two maps f , g : X → Y ,
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Pullbacks, Products and Equalizers (oh my!)

E X Yα f

g

given two maps f , g : X → Y , we can
form the equalizer E = Eq(f , g) which
comes with a map α : E → X making
f ◦ α = g ◦ α
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Pullbacks, Products and Equalizers (oh my!)

E X Y

Z

α f

g

!

given two maps f , g : X → Y , we can
form the equalizer E = Eq(f , g) which
comes with a map α : E → X making
f ◦ α = g ◦ α. If there is a map Z → X
doing the same, then it must factor
through the equalizer via a unique map
Z → E
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Pullbacks, Products and Equalizers (oh my!)

E X Y

Z

α f

g

!
In Set, E = {x ∈ X |f (x) = g(x)}
In Ab, E = Ker(f − g)
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Generalizing Sheaves

Lets first consider P = C (−,Y ) : O(X )op → Set.

Let {Ui → U} be an open cover.
1) for each Ui , the collection {Ui ∩ Uj → Ui} is an open covering
2) Consider the functions resUi ,Ui∩Uj

: P(Ui )→ P(Ui ∩ Uj) and
resUj ,Ui∩Uj

: P(Uj)→ P(Ui ∩ Uj), we can lift this to two functions

∏
i P(Ui )

∏
i ,j P(Ui ∩ Uj)

r1

r2

r1({fi : Ui → Y }i ) = {fi |Ui∩Uj
}i ,j

r2({fi : Ui → Y }i ) = {fi |Uj∩Ui
}i ,j

4) Finally consider the map r : P(U)→
∏

i P(Ui )
p(f : U → Y ) = {f |Ui

}
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General Sheaves

P(U)
∏

i P(Ui )
∏

i ,j P(Ui ∩ Uj)
r r1

r2

5) Clearly r1 ◦ r = r2 ◦ r as f |Ui
|Ui∩Uj

= f |Ui∩Uj
= f |Uj

|Ui∩Uj

6) if r(f ) = r(g) i.e. f |Ui
= g |Ui

the locality sheaf condition
implies f = g , that is, r is an injection
7)If {fi} is a collection of maps such that r1({fi}) = r2({fi}) then,

fi |Ui∩Uj
= fj |Ui∩Uj

the gluing sheaf condition says that there is a map f : U → Y
such that r(f ) = {f |Ui

} = {fi}, i.e. that r is a surjection onto the
equalizer of r1, r2.
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General Sheaves

So we can redefine a sheaf on O(X) as a presheaf P such that
P(U) is the equalizer of the diagram

P(U)
∏

i P(Ui )
∏

i ,j P(Ui ∩ Uj)
r r1

r2
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Sites

The relevant ideas we used from O(X) is exactly the data of a Site:

Def : Site

A small category C is a site if it has pullbacks and a collection of
coverings {Ui → U} such that:

if V → U is an isomorphism, then {V → U} is a covering.
(An open set covers itself)

if {Ui → U} a covering and {Vi ,j → Ui} coverings, then
{Vi ,j → U} is a covering.
(Refinement of coverings)

if {Ui → U} is a covering and V → U, then {Ui ×U V → V }
is a covering.
(if V ⊆ U then Ui ∩ V covers V )
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General Sheaves

So for a general site C and a category D with equalizers and
products (complete category) we can define a sheaf:

Def : Sheaf

A presheaf P : Cop → D is a sheaf if for every covering {Ui → U},
P(U) is the equalizer of the induced sequence

P(U)
∏

i P(Ui )
∏

i ,j P(Ui ×U Uj)
r r1

r2
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Quick Recap / Applications

We defined a sheaf on O(X)

We generalized the notions of ”collections, intersections, open
coverings, equality”

We reformulated sheaf conditions in terms of ”products,
equalizers and pullbacks”

We lifted the notion of a set-valued sheaf on O(X), to a
D-valued sheaf on a site C

Besides having applications to geometry, sheaves in this level of
generality define a topos, which is a modern tool in logic. All of
this can be found in [SGL]



37/59

Quick Recap / Applications

We defined a sheaf on O(X)

We generalized the notions of ”collections, intersections, open
coverings, equality”

We reformulated sheaf conditions in terms of ”products,
equalizers and pullbacks”

We lifted the notion of a set-valued sheaf on O(X), to a
D-valued sheaf on a site C

Besides having applications to geometry, sheaves in this level of
generality define a topos, which is a modern tool in logic. All of
this can be found in [SGL]



37/59

Quick Recap / Applications

We defined a sheaf on O(X)

We generalized the notions of ”collections, intersections, open
coverings, equality”

We reformulated sheaf conditions in terms of ”products,
equalizers and pullbacks”

We lifted the notion of a set-valued sheaf on O(X), to a
D-valued sheaf on a site C

Besides having applications to geometry, sheaves in this level of
generality define a topos, which is a modern tool in logic. All of
this can be found in [SGL]



37/59

Quick Recap / Applications

We defined a sheaf on O(X)

We generalized the notions of ”collections, intersections, open
coverings, equality”

We reformulated sheaf conditions in terms of ”products,
equalizers and pullbacks”

We lifted the notion of a set-valued sheaf on O(X), to a
D-valued sheaf on a site C

Besides having applications to geometry, sheaves in this level of
generality define a topos, which is a modern tool in logic. All of
this can be found in [SGL]



38/59

Ontological Logs

Concieved by David Spivak (MIT)

An ontological Log is just a labeled category

Objects are supposed to capture ideas, and morphisms
relations between them

[OLOG]
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Ontological Logs

Categorical constructions can then
be interpreted semantically

Identity ”A concept is itself”

Composability ”If I effect
something, I (might) have an effect
on the things it’s effecting”

Ex: Pullback
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Subcategories in Ontological Logs

From an abstract perspective, the labels ”Chair” and ”Support”
and ”Me” doesn’t really mean anything unless I’ve defined them
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Subcategories in Ontological Logs

If we expand the ontological log we might be able to capture some
more structure
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Some Simple Human Experimentation

Cat Forest Topology
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Some Simple Human Experimentation

Cat Forest Topology

This should be minor evidence that the process of ”expanding your
ontological log” is maybe something that humans do to represent
knowledge
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Ontological Expansions : Small Subcategories

Def : Sm(C)

Let C be a category

A small subcategory of C is a functor S : I → C, for I a
small category.

For two small subcategories, define the set
HomC(S ,S ′) = {f : S(i)→ S ′(j)|i ∈ I , j ∈ J}
A submorphism F : S → S ′ is a subset F ⊆ HomC(S , S ′)
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Example
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Question: How to get from picture one to picture two?
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Answer(?) : Ontological Generators

Naively:

Def : Ontological Generator

An Ontological Generator is a functor OG : C→ Sm(C)

For an object X ∈ C call OG (X ) the ”Ontological Expansion
of X”

This is great, but we want to be able to use it.

A stronger definition is needed.
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Current Def : OG

Def : OG

Let ($,⊗) be a small monoidial category, An Ontological
Generator is a parameterized functor OG : $→ (C ↓ sm(C)) such
that:

Ontological Composition OGs OGs′ = OGs⊗s′ : C→ sm(C)

Colimit is a section Colim ◦ OGs = IdC

Local Measurement For all s ∈ $,X ∈ C OGs(X ) is a site

Note: You can just think of an OG as a collection of naive
ontological expansions OGs : C→ sm(C)
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OG composition (Example Picture)

We want to be able to compose expansions in a controlled and
meaningful way

Anisotropy: Seeing the forest for the trees (as opposed to the
carbon atoms)
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OG composition

Realize Sm : Cat → Cat as a functor:

Sm(C) has already been defined.

For F : C→ D, we want Sm(F ) : Sm(C )→ Sm(D).

This is simple, for S : I → C ∈ Sm(C ) Sm(F )(S) = F ◦ S
for F : S → S ′, Sm(F )(F) = {F (f )|f ∈ F}
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OG Composition

Let OG1,OG2 : C→ sm(C), define
OG1 OG2 = colim ◦ Sm(OG1) ◦ OG2

i.e. :

C
OG2→ sm(C)

sm(OG1)→ sm(sm(C))
colim→ sm(C)
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Current Def : OG

Def : OG

Let ($,⊗) be a small monoidial category, An Ontological
Generator is a parameterized functor OG : $→ (C ↓ sm(C)) such
that:
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Colimit is a Section

Let’s first interpret what Colim ◦ OGs even means.

OGs(X ) : I → C

We can take the colimit of this functor

The statement Colim ◦ OGs = IdX is the statement that
Colim(OGs(X )) = X

That is, we can recover the original object X from its ontological
expansion
”An object isn’t the sum of its parts, but the colimit of its
ontological expansions”
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Example: The original OG, O(X)

Note that if we let $ = ∗ and OG∗ = O : Top → sm(Top). Then
O(X) becomes an ontological generator.

for f : X → Y let O(f ) = F = {f |U → V |V ⊇ f (U)}
Ontological Composition is trivial

Colim is a section Colim(O(X )) =
⋃
O(X ) = X

Local Measurement O(X ) is a site, as seen before.
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Future Work : Local Measurement

We want to be able to deduce properties about an object

If we expand enough, we might be able to get to some
”atomic subobjects”

We want to be able to build properties hierarchically from
these ”atoms”

We should be able to do this using the sheaf condition

In a terrible way, we can deduce your actions from the physics of
the entirety of your atoms
In a less terrible way, we can deduce the physics of your cell parts
from your atoms, your cells from your cell parts, your organs from
your cells and then you from your organs.
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OG-Sheaves / Measurement

That is, we want a definition along the lines of:

Current Work : OG-Sheaves / Measurement

A Measurement of an ontological generator OG, is a collection of
sheaves Ps,X : OGs(X )→ D

The real question is then: What should be used for D?
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Future Work : Intuition, actions and measurements

Furthermore, we want to change our intuition upon viewing an
ontology.
First some interpretations:
C =⇒ objects
sm(C) =⇒ ontological representations
sm(sm(C)) =⇒ categories of ontological representations.
So the idea is that an object S ∈ sm(sm(C)) should be an
intuition about the universe C. An ontological updator tells us
how to change our intuitions

Def : Ontological Updator

U : sm(C)→ endFunc(sm(sm(C)))
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Deep Conversations as Updators

Describing an object X is akin to expanding it OGs(X )

Combined with an ontological updator, then U(OGs(X )) tells
you how to change your intuition. I.e. U(OGs(X ))(S ) is your
new intuition after listening to OGs(X )

”How someone’s ontological expansion changed your intuition”

Example: You ask someone to tell you some macroscopic properties
of a cat, they tell you that a cat has a tail. You say to yourself,
”Wow, I already knew that” and so you add to your ontology that
the person you are talking to must think you’re pretty dull.
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Issues

1) In defining the spiral product, we are implicitly making the
assumption that sm(C) is cocomplete. But it seems like this
assumption is satisfied by the cocompleteness of C.

2) Colim(OGs(X )) works fine if just considering the subcategory
OGs(X ), however we’d like to have Colim ◦ OGs a functor. To this
end we search for a ”correct” embedding functor
sm(C)→ (smCat ↓ C) completing the chain:

C
OGs→ sm(C)

i→ (smCat ↓ C)
Colim→ C


